پروژه ناب

دانلود پروژه های دانشجویی ناب

پروژه ناب

دانلود پروژه های دانشجویی ناب

کلیات معادلات دیفرانسیل با مشتقات جزئی

کلیات معادلات دیفرانسیل با مشتقات جزئی

کلیات معادلات دیفرانسیل با مشتقات جزئی دسته: ریاضی
بازدید: 2 بار
فرمت فایل: doc
حجم فایل: 292 کیلوبایت
تعداد صفحات فایل: 30

یک معادله دیفرانسیل با مشتقات جزئی (یا نسبی) برای یک تابع رابطهای است که بین تابع مجهول u و متغیرهای مستقل آن (به تعداد متنابهی) و مشتقات جزئی تابع u نسبت به متغیرهای مستقل آن برقرار میباشد

قیمت فایل فقط 6,000 تومان

خرید

کلیات معادلات دیفرانسیل با مشتقات جزئی


مقدمه
یک معادله دیفرانسیل با مشتقات جزئی (یا نسبی) برای یک تابع رابطهای است که بین تابع مجهول u و متغیرهای مستقل آن (به تعداد متنابهی) و مشتقات جزئی تابع u نسبت به متغیرهای مستقل آن برقرار میباشد. تابع u را جوابی برای معادله دیفرانسیل فوق مینامیم هرگاه پس لز جایگزینی u(x,y,...) و مشتقات جزئی آن، این معادله دیفرانسیل نسبت به متغیرهای مستقل مذکور، درناحیه ای از فضای این متغیرهای مستقل تبدیل به یک اتحاد شود.
مرتبة یک معادلة دیفرانسیل با مشتقات جزئی بالاترین مرتبة مشتقات موجود در آن معادله است. مثلاً uuxy+uyux=f(x,y) یک معادله دیفرانسیل مرتبه دوم است. در اینجا    و و
یک معادلعه دیفرانسیل با مشتقات جزئی را خطی گوئین هرگاه این معادله نسبت به تابع مجهول و مشتقات آن، با ضرایبی که فقط تابع متغیرهای مستقل هستند، خطی باشد. یک معادله با مشتقات جرئی از مرتبه m را شبه خطی گوئیم هرگاه این معادله نسبت به مشتقات جزئی مرتبه mام تابع مجهول، با ضرایبی که فقط تابع متغیرهای مستقل u و مشتقات از مرتبه کمتر از m هستند، خطی باشد (مانند مثال بالا) یک معادله دیفرانسیل با مشتقات جزئی خطی یک حالت خاص معادله شبه خطی است.
2- معادلات دیفرانسیل با مشتقات جزئی مرتبه اول
معادله دیفرانسیل با مشتقات جزئی مرتبه اول خطی با ضرایب ثابت
به عنوان گام نخست معادلع دیفرانسیل (2-1) aux+buy+cu=f(xy) را درنظر میگیریم، که در آن تابع f داده شده و ضرایب ثابتاند. سعی میکنیم با تغییر متغیرهای ساده مانند (2-2) x=ay+a1 و y=by+b1 معادله دیفرانسیل با مشتقات جزئی (2-1) را به معادله دیفرانسیل ) uy+cu=f(ay+a1 , by +b1 تبدیل کنیم که مانند یک معادله دیفرانسیل معمولی خطی مرتبه اول با ضرایب ثابت نسبت به متغیر مستقل y حل میشود، منتها ثابت انتگرالگیری تابع دلخواهی از خواهد بود. بعد از حل بجای y و برحسب x و y جانشین میکنیم تا جواب u(x,y) حاصل شود البته لازمه این کار آنست که دترمیبنال ضرایب تغییر متغیرهای (2-C) غیرصفر باشد، سعنی مستقل بودن این متغیرها تضمین شود (این دترمینال ژاکوبی تغییر متغیرها است)
مثال ا
قضیه زیر یک روش حل معادله با مشتقات جزئی مرتبه اول شبه خطی را پیش روی ما میگذارد که فعلاً از بیان آن خودداری میکنیم.

قیمت فایل فقط 6,000 تومان

خرید

برچسب ها : کلیات معادلات دیفرانسیل با مشتقات جزئی , کلیات , معادلات دیفرانسیل , مشتقات جزئی , مقاله , پژوهش , تحقیق , پروژه , دانلود مقاله , دانلود پژوهش , دانلود تحقیق , دانلود پروژه , مقاله کلیات معادلات دیفرانسیل با مشتقات جزئی , پژوهش کلیات معادلات دیفرانسیل با مشتقات جزئی , تحقیق کلیات معادلات دیفرانسیل با مشتقات جزئی , پروژه کلیات معادلات دیفرانسیل با مشتقات جزئی

نظرات 0 + ارسال نظر
امکان ثبت نظر جدید برای این مطلب وجود ندارد.